

結構健康監測新技術

應用巨量數據縮減技術於結構健康診斷及線上子空間系統識別法 於結構勁度之即時量化評估

羅俊雄教授 國立台灣大學土木工程學系

2017年8月11日

Introduction (I)

Structural damage due to earthquake, scouring, aging, environmental impact load, etc.

Bridge collapse without warning

Bridge during scouring

Building damage during earthquake

Cracks of steel structure

Wind turbine blade

Collapse of building structure

Collapse Bridge due to scouring

Operation Modal Analysis / Seismic Response for Structural Damage Assessment

Introduction (II)

Damage assessment of structure using **feature extraction** and **system identification** techniques is needed to explore the current state of the structure.

Features are used to answer the following:

- 1 Is the system damaged?
 - Group classification problem for supervised learning
 - Identification of outliers for unsupervised learning

2 Where is the damage located?

- Group classification or regression analysis problem for supervised learning
- Identification of outliers for unsupervised learning

3 What type of damage is present?

- Can only be answered in a supervised learning mode
- Group classification

4 What is the extent of damage?

- Can only be answered in a supervised learning mode
- Group classification or regression analysis

5 What is the remaining useful life of the structure? (Prognosis)

- Can only be answered in a supervised learning mode
- Regression analysis

Objective: Develop an **on-line and almost real-time monitoring** of structural modal parameters (or feature extraction techniques) under operating conditions/earthquake loading, and conduct damage assessment on the structure.

Vibration-based damage detection: a multi-sensor architecture

- ◆結構系统識別方法:
 - 結構常態振動量測(微振)

√ 全自動隨機子空間識別法 (Covariance-driven stochastic subspace ID,SSI-COV)

√多重輸出AR Model (MV-AR)

•結構地震反應量測

√子空間識別法 (Subspace Identification, SI)

√ 遞廻性子空間系统識別 (Recursive Subspace Identification, RSI)

◆ 結構健康診斷損傷評估

•結構常態振動量測(微振)

√零子空間損傷識別 (Null-space damage index, Q-test)

√2D可視化技術結構損傷評估 (Sammon map)

√相關性指標 (Wavelet-based correlation of scalogram)

√多重奇異值譜分析法 (Multivariate Singular Spectrum Analysis, MSSA)

•結構地震反應量測(結合結構系统識別)

√勁度折减評估 (LSSM+EMCM)

Level-1

&

Level-2

Level-3

Structural Health Monitoring: Experimental Studies

(Level-1 Damage Assessment) Null-space and subspace damage index: DI_n & DI_s

National Taiwan University Department of Civil Engineering

Level-1 Damage Detection Algorithms: Centralized data analysis (MSSA)

Stage I: Decomposition

Step 2: Singular Value Decomposition

3. Perform SVD of X_{V} : $X_{V} = X_{VI} + X_{V2} + \dots + X_{VLsum}$ where $X_{Vi} = \sqrt{\lambda_{i}} U_{Vi} V_{Vi}^{T}$ $V_{Vi} = X_{V}^{T} U_{Vi} / \sqrt{\lambda_{Vi}}$ $\lambda_{V_{1}}, \dots, \lambda_{V_{Lsum}}$ and $U_{V_{1}}, \dots, U_{VLsum}$

are the eigenvalue and eigenvector of $X_V X_V^T$

Damage Detection Algorithms: Centralized fusion (MSSA)

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

System Identification: SSI-COV (for ambient data))

Subspace Identification: Tradition (for EQ excitation)

$$X_{(k+1)} = A_d \cdot X_{(k)} + B_d \cdot u_{(k)} + w_{(k)}$$
$$y_{(k+1)} = C_c \cdot X_{(k)} + D_c \cdot u_{(k)} + v_{(k)}$$

$$\boldsymbol{Y}_{f} = \boldsymbol{\Gamma}_{i} \cdot \boldsymbol{X}_{f} + \boldsymbol{H}_{i} \cdot \boldsymbol{U}_{f} + \boldsymbol{G}_{i} \cdot \boldsymbol{W}_{f} + \boldsymbol{V}_{f}$$

Approach 1: Orthogonal Projection:

$$\begin{split} \underbrace{U_{f}}_{f} & \longrightarrow Y_{f(k)} \Pi_{U_{f(k)}}^{\perp} = \Gamma_{i} X_{f} \cdot \Pi_{U_{f(k)}}^{\perp} + \underbrace{H_{i} U_{f(k)}}_{f(k)} \cdot \Pi_{U_{f(k)}}^{\perp} + G_{i} W_{f(k)} \cdot \Pi_{U_{f(k)}}^{\perp} + V_{f(k)} \cdot \Pi_{U_{f(k)}}^{\perp} \\ & \underbrace{\Xi_{p}^{T}}_{p} \longrightarrow Y_{f(k)} \Pi_{U_{f(k)}}^{\perp} \Xi_{p(k)}^{T} = \Gamma_{i} X_{f} \Pi_{U_{f(k)}}^{\perp} \cdot \Xi_{p(k)}^{T} + G_{i} \underbrace{W_{f(k)}}_{U_{f(k)}} \Pi_{U_{f(k)}}^{\perp} \cdot \Xi_{p(k)}^{T} \\ & \approx \Gamma_{i} X_{f} \Pi_{U_{f(k)}}^{\perp} \Xi_{p(k)}^{T} \end{split}$$

$$\begin{split} O_{(k)}^{Orthogonal} &= Y_{f(k)} \Pi_{U_{f(k)}}^{\perp} \boldsymbol{\Xi}_{p(k)}^{T} \\ &= USV^{T} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} S_{1} & \boldsymbol{\theta} \\ \boldsymbol{\theta} & S_{2} \approx \boldsymbol{\theta} \end{bmatrix} \begin{bmatrix} V_{1}^{T} \\ V_{2}^{T} \end{bmatrix} \approx U_{1} S_{1} V_{1}^{T} \\ \boldsymbol{\Gamma}_{i}^{Orthogonal} \Box U_{1} \end{split}$$

Approach 2: Oblique Projection:

$$O_{(k)}^{Oblique} = (Y_{f(k)} / U_{f(k)} \Xi_{p(k)}) / U_{f(k)}^{\perp} = \Gamma_{i} \cdot X_{f} / U_{f(k)}^{\perp}$$

$$= USV^{\mathrm{T}} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} S_{1} & 0 \\ 0 & S_{2} \approx 0 \end{bmatrix} \begin{bmatrix} V_{1}^{\mathrm{T}} \\ V_{2}^{\mathrm{T}} \end{bmatrix} \approx U_{1}S_{1}V_{1}^{\mathrm{T}} \longrightarrow \Gamma_{i}^{Oblique} \Box U_{1}$$
Extended observability $\Gamma_{i} = \begin{bmatrix} C_{c} \\ C_{c}A_{d} \\ C_{c}A_{d}^{2} \\ \vdots \\ C_{c}A_{d}^{i,1} \end{bmatrix} \in \mathbb{R}^{li\times 2n}$
Multi-variable Output Error State sPace algorithm
$$\int \begin{bmatrix} U_{f(k)} \\ Z_{p(k)} \\ Z_{1(k)} \\ Z_{2(k)} \\ Z_{3(k)} \\ Z_{3(k)} \\ Z_{2(k)} \end{bmatrix}_{2i(m+l)\times i} \left(\begin{bmatrix} Q_{1(k)} \\ Q_{2(k)} \\ Q_{2(k)} \\ Q_{3(k)} \end{bmatrix}_{2i(m+l)\times i} \right) \xrightarrow{Oblique} Projection$$
(1) Direct expansion
(2) LQ - decomposition

Method 1 (BonaFide RSI): Fixed-length window

Method 2: Enlarged-length window

CASE 1 Study: Damage Assessment of Building Structure Using RSI

Structural Type : 7-story with one story of basement RC building with wall and open core Total number of channels: 29 (INCLUDING FREE FIELD)

26 7 25.5 6.8 25 6.6 24.5 6.4 24 6.2 Latitude,(N) ſ₽. 23.5 6 23 5.8 22.5 5.6 22 5.4 21.5 5.2 121 122 120 123 Longitude,(E)

National Taiwan University Department of Civil Engineering

CE-NCHU Building 1994 ~2013 : 79 events

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

CASE 1 Study: Damage Assessment of Building Structure Using RSI

National Taiwan University Department of Civil Engineering

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

Mode Shapes at time = 30.3 sec. in the small-scale seismic event

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

3

2

0.

0

-2

Mode - 2 : 2.9301 Hz

Mode - 1 : 2.8244 Hz

0

0

0

-2

-2

Mode - 1 : 1.965 Hz

-2

Mode - 1 : 1.8895 Hz

0↓ 2

0↓ 2

3

0

2

0

-2

0

-2

0

-2

Time at 38.5 sec. (Before Strong Motion)

Time at 70.0 sec. (After Strong Motion)

Time at 80.0 sec. (After Strong Motion)

Mode - 3 : 3.825 Hz

2

0

-2

Mode - 3 : 2.7129 Hz

3

2

1

0

0

-2

2

0

-2

Mode - 2 : 1.9704 Hz

Once modal frequencies and mode shapes are identified by RSI-BonaFide, and information of mass is properly assumed...

Ref: J. M. Caicedo, S.J. Dyke and E. A. Johnson. (2004),

Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data, Journal of Engineering Mechanics, Vol.130, No.1, p49-60.

(2) Efficient Model Correction Method (EMCM)

Ref: K.V. Yuen, "Efficient model correction method with modal measurement," Journal of Engineering Mechanics, Vol. 136, No. 1, 91-99 (2010).

(3) Satisfaction of Eigen-equation

[Model Error = 0]

 $K_{update} \cdot \widehat{\Phi}_r - \widehat{\omega}_r^2 \cdot M_{update} \cdot \widehat{\Phi}_r = 0$

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

Computational Time per Identification using traditional LQ decomposition]
RSI-Procedure	Preprocess	Projection	Eigen-value	Parameter	Compu	tational	
		(Oblique)	Decomp.	Extraction	Ti	me	
Mean (sec.)	0.0194	0.0192	0.0249	0.0046	μ	0.0681	
STD (sec.)	0.0104	0.0025	0.0041	0.0011	$\mu + 2\sigma$	0.1043	

Computational Time per Identification using RSI-BonaFide-OBL								
RSI-Procedure	Duonuo ooga	Projection	Eigen-value	Parameter	Compu	tational		
	Preprocess	(Oblique)	Decomp.	Extraction	Ti	me		
Initial Conduction	0.0194	0.0252	0.0101	0.0061	0.0	608		
Updating Method		Bona-Fide L32 renewing algorithm						
Mean (sec.)	0.0194	0.0050	0.0251	0.0046	μ	0.0541] –	
STD (sec.)	0.0104	0.0005	0.0043	0.0012	$\mu + 2\sigma$	0.0869		

Computational Time per Identification using RSI-Inversion-OBL								
RSI-Procedure	Duenue ener	Projection	Eigen-value	Parameter	Comput	tational		
	Preprocess	(Oblique)	Decomp.	Extraction	Tiı	ne		
Initial Conduction	0.0194	0.3149	0.0314	0.0129	0.3786			
Updating Method		Inversion-Oblique Projection renewing algorithm						
Mean (sec.)	0.0194	0.0032	0.0259	0.0048	μ	0.0533		
STD (sec.)	0.0104	0.0004	0.0041	0.0016	$\mu + 2\sigma$	0.0863		

Less Than Shifting Length = 0.1 sec

NCREE-South Center Grand Opening Shaking Table Test

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

Damage Detection & Localization

(a) Weak bracing at the 1st FL of A.

Brace1 Dimension: $19 \text{ mm} \times 1.2 \text{ mm}$ (weak) Brace2 Dimension: $21.3 \text{ mm} \times 2 \text{ mm}$ (normal) Dimension of each floor: $1.1 \text{ m} \times 1.5 \text{ m} \times 1.17 \text{ m}$

EQ_2 (216 g	EQ_ (289)	300 EQ_ gal) (444	450 EQ (633	600 EQ_ gal) (706	750 gal) EQ_(864	900 gal)
WN50_1	WN50_2	WN50_3	WN50_4	WN50_5	WN50_6	WN50_7
Stru	icture d	lamage	ed in	St	ructure	damag

tructure damaged ir Lower modes

1.5 m

6 @ 1.0 m

1.0 m

5F

4F

3F

2F

1F

Results from SSI-COV (ambient data)

Freq.(Hz)	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
Mode 1	4.917	4.899	4.896	4.872	3.251	2.329	1.744
Mode 2	7.133	7.112	7.143	7.130	6.655	6.559	6.502
Mode 3	15.434	15.398	15.418	15.326	11.860	11.056	10.646
Mode 4	20.770	20.782	20.757	20.748	20.362	20.417	20.224
Mode 5	21.843	21.749	21.855	21.768	21.252	21.010	22.399
Mode 6	27.817	27.817	27.712	27.780	27.782	27.464	27.238
Mode 7	33.775	33.655	32.647	32.868	32.823	32.745	38.072
Mode 8	38.511	38.028	37.750	37.597	37.631	37.760	34.574
Mode 9	39.978	39.534	38.361	38.422	39.198	38.966	38.864

Results from SSI-COV (ambient data)

1.5 m 1.0 m 6F 5F 4F 5F 4F 5F 1.5 m 6 @ 1.0 m 5F 1.5 m 6 @ 1.0 m

Freq.(Hz)	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
Mode 1	1.141	1.139	1.137	1.136	1.138	1.133	1.131	1.129
Mode 2	2.224	2.211	2.203	2.200	2.201	2.197	2.190	2.187
Mode 3	3.632	3.628	3.615	3.612	3.602	3.587	3.579	3.576
Mode 4	6.299	6.295	6.283	6.277	6.267	6.248	6.245	6.244
Mode 5	8.516	8.478	8.463	8.466	8.458	8.451	8.410	8.380
Mode 6	9.189	9.184	9.169	9.162	9.146	9.105	9.091	9.078
Mode 7	10.450	10.420	10.390	10.403	10.399	10.395	10.336	10.309
Mode 8	12.065	12.064	12.049	12.041	12.032	11.979	11.950	11.933
Mode 9	14.313	14.309	14.299	14.297	14.295	14.282	14.265	14.245
Mode 10	19.821	19.733	19.631	19.582	19.471	19.125	19.010	18.917
Mode 11	21.949	21.860	21.783	21.753	21.665	21.446	21.355	21.355
Mode 12	27.961	27.954	27.974	27.975	28.019	28.116	28.117	28.114
Mode 13	38.407	38.240	37.914	37.794	37.525	37.054	36.931	36.954
Mode 14	58.419	58.233	57.598	57.294	56.573	54.786	53.778	51.835
Mode 15	60.134	59.917	59.660	59.529	59.494	59.422	59.281	59.225
Mode 16	76.283	76.249	75.989	75.944	75.801	75.289	74.380	73.502
Mode 17	77.928	77.781	77.221	77.143	76.920	76.668	76.682	76.598

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

 $C = \Phi \Lambda \Phi^T$

Step 1: Create X matrix (consider to be N-dimensional space)

where M is the number of sensing nodes, N is the number of discrete Fourier amplitude. (Time domain data can also be applied.)

Step 2: Covariance matrix

$$[C]_{M \times M} = cov(X) = \frac{XX^T}{M - 1}$$

Step 3: Solve for the eigenvalue, eigenvectors of C

$$[\Lambda] = diag(\lambda_1, \lambda_2, \dots, \lambda_M) \quad \text{where } \lambda_1 > \lambda_2 > \dots > \lambda_M$$

Step 4a: Project the high-dimensional space onto the 2-D dimensional space

$$[X]_{2D-PCA} = X \cdot [\Phi(\lambda_1, \lambda_2)] \qquad \longleftarrow 2D\text{-PCA matrix}$$

$$[X]_{2D-PCA} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{M1} & x_{M2} \end{bmatrix}$$
Euclidean distance:

$$\delta_{Xi,j} = \sqrt{\sum_{p=1}^{2} (X_{i,p} - X_{j,p})^2}$$
to construct the initial PCA-based map

$$[\Delta_{PCA-map}]_{M \times M} = \begin{bmatrix} 0 & \delta_{X1,2} & \cdots & \delta_{X1,M} \\ \delta_{X2,1} & 0 & \cdots & \delta_{X2,M} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{XM,1} & \delta_{XM,2} & \cdots & 0 \end{bmatrix}_{M \times M}$$

NCREE-South Center Grand Opening Ambient Vibration Test

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

Damage Assessment of Bridge Under Scouring Process

Damage Assessment of Bridge Under Scouring Process

Moving window SSI-COV (using velocity data)

Damage Detection Algorithms: Results from DI_N & DI_S (scouring test)

Damage detection & Localization : Sammon Map (scouring test)

Bridge Vibration Monitoring under Operating Condition

Environmental Effects for Vibration-based SHM

Using moving window SSI-VOV algorithm

Environmental Effect on Modal Parameter Identification

National Taiwan University Department of Civil Engineering

System identification of wind turbine blade under operating condition

Geometry setup of turbine blade

Coordinate transformation between local and global coordinate system

2017年結構抗震與健康監測新技術研討會

National Taiwan University Department of Civil Engineering

Methodology of tracking blade geometry setup

Out-of-plane motion of turbine blade (test case of 50 rpm)

Recorded & initial assumption of flap-wise wave forms

Recorded and estimated flap-wise wave form

Residual signal of flap-wise wave form

Table 1b: Identified wind turbine pitching and rolling angles from Test-2.

Test-2	ϕ	γ_1	<i>Y</i> 2	<i>Y</i> 3	
15 rpm: Case 1	89.96 (90.0)	-6.58 (-5.0)	12.81 (10.0)	0.1 (0.0)	
15 rpm: Case 2	90.18 (90.0)	-9.6 (-10.0)	12.05 (10.0)	0.63 (0.0)	
15 rpm: Case 3	85.1 (90.0)	85.1 (90.0)	10.69 (10.0)	-0.84 (0.0)	
Note: (*) indicate the blade rolling angle in its original setup					

Results of Identification (1)

Field Experimental Study

Field Experimental Study

(a) Recorded acceleration of out-of-plane motion of blade from three different dataset (b) Plot the stability diagram (from SSI-COV) from each dataset, (c) Plot the stability diagram (using MSSA to remove the rotation frequency signal) for dataset 31 and 19.

Field Experimental Study

(a) The relationship between the mean wind velocity, the turbine rotation Frequency and the identified blade vibration frequency.

Conclusions

Centralized Data Analysis Techniques

System Identification :

Stochastic Subspace Identification (ambient data) Recursive Subspace Identification (earthquake response)

Damage Assessment Level-3 : LSSM+EMCM (stiffness reduction---earthquake response)

Damage Detection & Localization (Level-1 & Level-2): Null-space damage index Sammon map--- 2D visualization

Sensor-Level Data Analysis Techniques

Damage Detection & Localization (Level-1 & Level-2): Wavelet-based correlation analysis Almost Real-time Damage Assessment

Challenges in SHM of Civil Structures

Civil Infrastructures

2017	Jun-Da Chen & Chin-Hsiung Loh, "Tracking Modal Parameters of Building Structures from Experimental
2017	Studies and Earthquake Response Measurements," Published in Int. J. of Structural Health Monitoring,
	March 2017 DOI: 10.1177/1475921717696339.
2017	Chin-Hsiung Loh & Jun-Da Chen, "Tracking Modal Parameters from Building Seismic Response Data
2017	Using Recursive Subspace Identification Algorithm," Published in Int. J. Earthquake Engineering &
	Structural Dynamics, April 2017, DOI: 10.1002/eqe.2900
2016	Chin-Hsiung Loh*, Chuan-Kai Chan, Sheng-Fu Chen, Shieh-Kung Huang, "Vibration-based Damage
2010	Assessment of Steel Structure Using Global and Local Response Measurements," Earthquake engineering
	& Structural dynamics, 2016; 45:699-718.
2015	Chin-Hsiung Loh*, Yu-Ting Huang, Wan-Ying Hsiung, Yuan-Sen Yang, Kenneth J. Loh, "Vibration-Based
2015	Identification of Rotating Blades Using Rodrigues' Rotation Formula from A 3-D Measurement," Journal of
	Wind and Structures, Vol.21, No.6, December 2015, pp.677-691.
2015	Chin-Hsiung Loh*, Shu-Hsien Chao, Jian-Huang Weng, Tzu-Hsiu Wu, "Application of Subspace
2015	Identification Technique to Long-Term Seismic Response Monitoring of Structure, " Earthquake Engineering
	& Structural Dynamics, (2015), 44:385-402
2015	Chin-Hsiung Loh, T Y Hung, S F Chen and W T Hsu, "Damage Detection in Bridge Structure Using
2010	Vibration Data under Random Travelling Vehicle Loads," Journal of Physics: Conference Series (DAMAS)
	628 (2015) 012044.
2014	Chao, S.H., and Loh, Chin-Hsiung, "Vibration-based damage identification of reinforced concrete member
	using optical sensor array data," J. Structural Health Monitoring, Vol.12, No. 5-6, 397-410. 2014. IF=3.193
2014	Chao, S.H., Chin-Hsiung Loh, Tseng, M.H., "Structural Damage Assessment Using Output-Only
	Measurement: Localization and Quantification," Int. Journal of Intelligent Material Systems and Structures,
	Vol. 25(9) 1097–1106, 2014. (IF=0.45)
2014	Loh, Chin-Hsiung. "Sensing solutions for assessing and monitoring of dams," Chapter 10, Sensor
	Technologies for Civil Infrastructures (Vol.2: Applications in Structural Health Monitoring), Edited by M.L.
	Wang, J.P. Lynch and H. Sohn, Elsevier Ltd 2014, pp: 275~308. (Book Chapter Contribution) (IF=0.45)
2013	Chao, S.H., Loh, C.H., Tseng, M.H., "Structural Damage Assessment Using Output-Only Measurement:
	Localization and Quantification, "Accept for publication in Int. Journal of Intelligent Material Systems and
	Structures, June 2013. IF:1.525
2013	Chao, S. H. and Lon, C. H., "Application of Singular Spectrum Analysis to Structural Monitoring and
	Damage Diagnosis of Bridges," J. of Structures and Infrastructural Systems 2) Volume 10, 2014 - <u>Issue 0</u>
2013	Lon, C.H. and Liu, Y.C., "Application of recursive SSA as data pre-processing filter for stochastic subspace
	identification," Accept for publication in Smart Structures and Systems, Vol.11, No.1 (2013) IF:1.430

Acknowledgements

科技部專題研究案

2016-8/2017-7: 2015-8/2016-7: 2014-8/2015-7: MOST 105-2625-M-002-003; MOST 104-2625-M-002-016; MOST103-2625-M -002-006;

MOST 105-2221-E-002-026 MOST 104-2221-E-002-013 MOST 103-2221-E-002-064

Research Assistant from Prof. Loh's research Lab

李宗憲

黄昱廷

熊婉赢

葉乃睿

Than you for your listening !

