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ABSTRACT 

A method is presented for simulating earthquake ground motions at 
local-field points under the condition that the recorded motions are 
specified at several locations and the stochastic characteristics of the field 
also are designated.  The simulated motions at observation points coincide 
with observed records.  The state equation expressing the spatial and 
temporal field of earthquake ground motion compatible with the modeled 
stochastic field is derived by using the autoregressive process.  The 
Kalman filtering technique is used to identify the best adaptive estimator of 
a stochastic field from observations made at discrete spatial and temporal 
points.  To take into account the nonstationarity and inhomogeneity of 
earthquake ground motions, the algorithm to identify the stochastic 
characteristics of the field from observed earthquake motions is also 
developed and introduced to the conditional simulation algorithm.  This 
analytical method is very promising for conditional simulation of 
earthquake motion at unobserved locations. 

INTRODUCTION 

Earthquake ground motions vary in 
time and space.  Various methods for 
simulating space-time correlated ground 
motion have been proposed.  The one 
most widely used is a probabilistic 
approach based on the cross-correlation 
function or cross-spectrum.  The theory 
of random fields and its application to 
digital simulation of earthquake ground 
motions are well established [1].  As 
substantial databases of earthquake 

ground motions based on the dense 
strong motion arrays have been formed, 
the stochastic characteristics of the 
space-time correlation of earthquake 
motions are modeled by the function of 
the separation distance between two 
points, the traveling time of the wave, the 
frequency, and the wave number.  Waves 
simulated by the random field theory, 
however, are only sample waves. 

Conditional simulation methods must 
be devised that allows realization of a 
sample field at an unobserved location 
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which satisfies the properties of a 
stochastic field and is compatible with 
measured values at observed locations.  
To obtain this kind of simulation a 
method that used closed form solutions of 
conditional probability functions for 
Fourier coefficients [2], nonstochastic 
conditional simulation [3], and appli- 
cation of the Kriging method [4,5] has 
been developed.  In these analyses, as all 
time histories of propagating waves at 
observation points must be known apriori, 
are not applicable to the real-time 
conditional simulation of earthquake 
motions.  The use of observed real-time 
earthquake motions obtained from 
existing array observation systems to 
simulate earthquake motions at several 
unobserved locations on real-time is main 
concern of this paper. 

SPACE-TIME EQUATION OF 
EARTHQUAKE MOTION 

The temporal and spatial fields of 
earthquake motion are assumed to be 
expressed by a spatially correlated 
autoregressive process 
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 (1) 

in which zt is a vector composed of n- 
dimensional earthquake motion at time t 
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When we define the following vector 

TT
qt

T
t

T
tt },,,{ 211 ����

� zzzZ �  (3) 

Eq. (1) can be rewritten 
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in which wt is the system noise with co- 
variance matrix Qt = E [ ( tt ww � ) ( tt ww � )T ] 
and tw  the mean value of noise at time t.  
When the posterior best estimator of Zt–1 
is given by 1

ˆ
�tZ , the apriori best 

estimator of zt is calculated as 
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Defining the difference between zt–k and 
kt�z  for arbitrary k 
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The covariance matrix of zt is given by 
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in which Pt –1 is the system covariance 
matrix at time t – 1.  If the earthquake 
motion is assumed to be a stochastic field 
that is homogeneous in time and 
stationary in space, this matrix is defined 
as  
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in which 111
ˆ~

���

�� ttt ZZZ , 1
ˆ

�tZ  is the 
posterior best estimator of Zt –1, and R(p) 
the cross correlation matrix with dimen- 
sion (n � n) defined by  
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The coefficient matrices Ai of the auto- 
regressive process can be calculated by 
use of the cross correlation function of zt.  
Subtracting Eq. (5) from Eq. (1) and 
taking its transverse then multiplying by 

kt�z~  (k = 1, 2, …, q ) from the left; 



 Sato, Imabayashi: Real time conditional simulation of earthquake ground motion 29 

)10(]~~[

]~~[]~~[

]~~[

2211

T
q

T
qtkt

TT
tkt

TT
tkt

T
tkt

E

EE

E

Azz

AzzAzz

zz

��

����

�

��

���

�

 

Taking into account Eq. (9), Eq. (10) is 
transferred to the following simultaneous 
equation to define the coefficient matrices 
of the autoregressive process in Eq. (1)  
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Once the cross correlation matrix defined 
by Eq. (9) and the observed time series of 
earthquake motion from time t – q to t – 1 
are given, earthquake motion at time t 
can be simulated by Eq. (1). 

CONDITIONAL SIMULATION OF 
EARTHQUAKE MOTION 

Consider the case in which the total 
number of points for which the earth- 
quake ground motion needed is n, but 
records of earthquake motion are 
obtained only at m (m < n) observation 
points as defined by 

})(,),(),({ 21 tgtgtg mt ��y  (12) 

The observation equation then is  

][,][ 0IHzHy �� tt  (13) 

in which H is the observation matrix with 
the dimension (m � n) and I the unit 
matrix with the dimension (m � m).  This 
is a special case in that the observation 
vector yt and the vector zt to be estimated 
have the same physical value [6].  The 
covariance matrix of the observation 
noise, St, is therefore assumed to be the 
zero matrix 

St = 0 (14) 

The Kalman filtering technique [7] is used 
to obtain the posterior best estimator of 
earthquake motion at time t conditioned 
by the observation equation.  Because 
the apriori best estimator and its 
covariance matrix are given by Eqs. (5) 
and (7), the posterior best estimator of zt 
and its covariance matrix Pt are  
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in which Kt is a Kalman gain at time t and 
is defined as 
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Partitioning the matrix Mt into the 
observed and unobserved parts 
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and substituting the H matrix given in Eq. 
(13) and Eq. (18) into Eqs. (16) and (17), 
the Kalman gain and covariance matrix Pt 
yield 
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Substituting Eqs. (19) and (20) into Eq. 
(15) the best posterior estimator of 
earthquake motion is  
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These results show that the posterior best 
estimators of earthquake motion at 
observation points are identical to the 
observed values and that the components 
of covariance matrix become zero. 

To obtain sample earthquake motion 
at an unobserved point we must add a 
sample fluctuation to the posterior best 
estimator of earthquake motion.  The 
sample field is simulated by 

ezz ��
�� mntmnt ;; ˆ  (22) 

in which e is the sample error function 
vector simulated by multiply-correlated 
process with a zero mean vector,  and 
covariance Pt;n–m,n–m being defined by 
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By factoring matrix Pt;n–m,n–m the error 
sample function is  

T
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in which N is an n – m dimensional 
sample noise vector generated by the 
standard normal distribution density 
function. 

STOCHASTIC MODEL OF 
EARTHQUAKE MOTION 

We assume that earthquake motion at 
point i and time t is expressed by the 
cross-correlated m stochastic process ui(t ) 
(i = 1, 2, …, m) [1] as 
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in which �pn are mutually independent 
uniformly distributed variables over – � to 
� and 
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in which T is the duration of earthquake 
motion.  ��� )( nipH  is obtained by fac- 
toring the cross spectrum Sij (dij , �n) 
defined in the field as  
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and �ip is calculated by 
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The cross spectrum is assumed to be 
given by the equation 
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in which dij is the relative distance 
between points i and j, c the propagating 
wave speed, and ST(�n) the discretized 
homogeneous and stationary power 
spectrum density function at the circular 
frequency of �n and is defined by the 
following equation, provided the discrete 
Fourier cos and sin series amplitudes of 
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an and bn are given at a certain point in 
the concerned field, 

2
)(

22
nn

nT
baS �

����  (30) 

To make the conditional simulation of 
earthquake ground motions, the cross 
correlation function must be defined in 
the field obtained by inverse Fourier 
transform of the cross spectrum; 
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in which � is the relative time delay of 
earthquake motion between points i and j. 

Equation (31) is intended only to 
illustrate the procedure, but it does show 
some characteristics of the empirical 
correlation functions obtained from dense 
accelerograph array data.  Figure 1 
shows the simulated sample fields of a 
one-dimensional  wave  propagation  
with  velocity of  c =1000m/s  and  � = 
0.02  from Eq. (25).  Each point is 
separated by 100m.  In the simulation 
earthquake ground motion at the left edge 
point is assumed to be given and its 
discrete Fourier spectrum amplitude 
calculated (Fig. 2), after which the 
waveforms of the remaining points can be 
simulated. 

IDENTIFICATION OF 
AUTOREGRESSIVE PROCESS 

Identification of Observed Parts 
So far we have assumed that the 

temporal and spatial stochastic charac- 
teristics  are  defined  in  the  concerned 

 

 

Fig. 1 Sample earthquake ground mo- 
tions simulated by Eq. (25) 

 

(a) time history 

 
(b) Fourier spectrum 

Fig. 2 Input earthquake motion into the 
time space field 
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field apriori.  Because of nonstationarity 
and nonhomogeneity of earthquake 
ground motions these stochastic charac- 
teristics must be identified from observed 
motions. 

When the time history of earthquake 
ground motions at all observed stations 
are assumed to be given, Eq. (4) is 
rewritten in the form of observation 
equation  
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in which vt is the observation noise and 
the observation matrix is defined by 
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in which zt is a vector composed of m- 
dimensional observed earthquake motion 
at time t ; zt = { g1(t ), g2(t ), …, gm(t ) }.  The 
state space description of the coefficient 
matrices of the autoregressive process is 
given by  
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To apply the Kalman filtering 
algorithms for identifying autoregressive 
process the coefficient matrix appeared in 
Eqs. (32) and (34) is rearranged as a 
matrix composed of column vectors ak,t (k 
= 1, 2, …, m) 
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The state space and observation equa- 
tions can be rewritten  

tktktktktk tg ,,1,, )(][ vaHaIa ���
�

 (36) 

in which 
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The algorithm of the Kalman filtering for 
Eq. (36) are formulated as developed in [8] 

 (1) Initial conditions:  

0,,,ˆ 000,00, ���� tkk RRPPaa  

 (2) Time step increase: t = t + 1 

 (3) Predicted state estimation: 

1,,1,, ,ˆ
��
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 (4) Kalman gain: 
1
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�� RHMHHMK T
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T
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 (5) Corrected state estimation: 

))((ˆ ,,,0, tktktktkk tg aHKaa ���  

 (6) Estimation of error covariance matrix:  

tkttktktk ,,,, MHKMP ��  

Through the steps from (1) to (6) the 
posterior best estimator of coefficient 
matrices of autoregressive process is 
calculated. 

Identification of Unobserved Parts 

To identify the coefficient matrices of 
autoregressive process related to 
unobserved parts the cross-correlation 
function of the concerned field must be 
given.  Because we assume the form 
expressed by Eq. (31) for cross-correlation 
function, identification of the parameters 
� and c from observed earthquake ground 
motions are enough to define the cross- 
correlation function.  Once this function 
identified Eq. (11) is rewritten as 

R A = r (37) 

in which R, A and r are the matrices 
rearranged their components and 
partitioned into the observed and 
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unobserved parts as 
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The partitioned matrix Aoo can be 
identified by using observed earthquake 
ground motions as mentioned in the 
previous section.  The components of 
auto-regressive matrices related to 
unobserved points can be determined by 
solving following equations 
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in which (l = 1, 2, …, m), (s = m + 1, m + 
2, …, n), (i = 1, 2, …, m � q ) and (k = 1, 
2, …, (n – m) � q ).  Solving Eq. (40) the 
unknown values of ou

jlA and uu
jlA  can be 

determined.  As can be seen from Eq. (39) 
the number of unknown values is (n – m) � 
q but the number of equation is n � q .  
We can apply the least square estimation 
algorithm to define the most appropriate 
values of uo

jlA . 

NUMERICAL EXAMPLES 

To verify the applicability of the 
autoregressive process for simulating 
multi-correlated earthquake motions, we 
assume that the sample earthquake 
motions shown in Fig. 1 are observed at 
all points up to time t – 1 and that 
earthquake motions at time t are 
simulated by Eq. (4) with no system noise.  
The coefficient matrices of the auto- 

regressive process are determined by 
solving Eq. (11) and assigning � = 0.02 
and c = 1000m/sec for Eq. (31).  The 
results shown in Fig. 3 are in good 
agreement with the sample motions 
shown in Fig. 1. 

When the stochastic characteristics, 
i.e., the cross-correlation function of the 
field, and earthquake motions at several 
points in Fig. 1 are given up to time t – 1 
as observed motions, the motions at the 
intermediate points at time t are inter- 
polated from Eq. (21).  The results shown 
in Fig. 4(a) agree well with the sample 
motions shown in Fig. 1.  Figure 4(b) is 
the interpolated earthquake ground 
motions for the case of � = 0.1 and c = 
1500m/s.  As the value of � increases 
the distortion of propagating wave be- 
comes large.  Even such a case the 
developed interpolation algorithm works 
well. 

 

Fig. 3 Earthquake ground motions 
simulated by the autoregressive 
process defined by Eq. (4) with no 
system noise.  The coefficient 
matrix of AR process are obtained 
by solving Eq. (11) provided the 
cross-correlation function of the 
concerned field is given by Eq. 
(31) 
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(a) the case of c = 1000m/s and � = 0.02 � 2��

 

(b) the case of c = 1500m/s and � = 0.1 � 2� 

Fig. 4 Interpolated earthquake ground motions (thin lines) when earthquake motions 
(thick lines) at points expressed by � are given.  For the comparison the 
sample earthquake motions simulated by Eq. (25) are shown by broken lines. 

Increasing the number of observation 
points improves the accuracy of the 
posterior estimation of earthquake 
motion at an unobserved point.  Con- 

sider a realistic two-dimensional  field,  
in  which  an  unobserved point is lo- 
cated at the center of the field and one 
observation point (No. 4) is added to the 
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already distributed three observation 
points (No. 1, 2, 3) as shown in Fig. 5.  
The side length of each grid is 100m.  
Earthquake motion propagating in the 
45� direction to horizontal axis  with a 
wave velocity of 1000m/sec and � = 0.02 
is assumed, and sample motions are 
simulated at five points including 
unobserved point (Fig. 5).  The resulting 
time history for the unobserved point 
becomes the exact time history when the 
posterior estimation of earthquake 
motion is introduced.  The interpolated 
motion at the unobserved point obtained 
from records providing three observation 
points is shown in Fig. 6(a) and the time 
history that takes into account the record 
for a newly added observation point is in 
Fig. 6(b).  As the number of observation 
points  increases,  the  estimated  earth- 

quake  motion  comes  close  to  the  exact 
time history as can be seen in Fig. 6(c). 

 

Fig. 5 Location of observation points 
and an unobserved point

 

(a) the case of three points 
observations (�) 

 

 

(b) the case of four points 
observations (�) 

 

 

(c) comparison between the 
exact ground motion (1) 
and interpolated ones  
(2: from case (a),  
 3: from case (b)) 

Fig. 6 Increase in interpolation accuracy of earthquake ground motion at an 
unobserved point as the number of observation points increases
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When the stochastic characteristics 

of the field are not given apriori we must 
identify the cross-correlation function 
and the coefficient matrices of the 
autoregressive process from the observed 
earthquake motions.  To demonstrate 
the application of the algorithm developed 
previously, sample earthquake motions 
are simulated and we select three of them 
as observed earthquake motions (Fig. 7).  
Examples of identified cross-correlation 
functions and components of coefficient 
matrices of autoregressive process are 
shown in Figs. 8 and 9, respectively.  In 
Fig. 8 the thick line is the identified 
correlation function and thin line is the 
function used to simulate sample 
earthquake motions.  Figure 9 is time 
histories of the identified autoregressive 
coefficient matrix components related to 

observed points.  For conditional inter- 
polation of earthquake ground motions 
the components of the coefficient 
matrices of autoregressive process related 
to unobserved points must be calculated 
by Eqs. (39) and (40).  The accuracy of 
calculated results is shown in Fig. 10 in 
which the abscissa is the exact values 
and the ordinate the calculated values.  
Because all calculated components lie on 
the line with 45� to abscissa, we can 
confirm the algorithm to identify the 
autoregressive process only from 
observed data.  Once the coefficient 
matrices of autoregressive process are 
identified we can interpolate earthquake 
motions at unobserved points from 
observed motions.  Figure 11 shows the 
ability of the proposed method.

 

Fig. 7 Sample earthquake motions (left) and earthquake motions assumed to be 
observed (right) 

 

Fig. 8 Examples of identified cross-correlation function (thick line) from ground 
motions and one used to simulate sample earthquake motions (thin line)
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Fig. 9  Examples of identifying process of AR coefficient matrix components

 

 

Fig. 10 Comparison of the identified AR 
coefficient matrix components 
with the exact ones 

 

Fig. 11 Interpolated earthquake ground 
motions (thin line) by using 
identified AR matrix components 
when earthquake motions are 
assumed to be given at three 
points expressed by  �
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CONCLUSION 

We have proposed a stochastic 
interpolation method for the conditional 
simulation of earthquake motion.  It 
combines the methodology of the multi- 
autoregressive process for simulating 
earthquake motions and the Kalman 
filtering technique in which the state 
vector, including unknown parameter, is 
updated based on observations.  This 
method provides the best estimator of 
earthquake motions at unobserved points 
that coincide with sample motions at 
observed points.  Its application to 
earthquake ground motion simulation is 
illustrated by several examples. 
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